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ABSTRACT:  With innovation based on 

available data, the creation of machine learning 

systems that ensures user privacy is now more 

pressing than ever. Organizations have been 

utilizing centralized datasets for model training 

purposes which raises serious concerns about 

potential data leakage breaches, misuse as well 

as regulatory compliance. The project “Secure 

Privacy Using Federated Learning Techniques” 

attempts to solve these issues by employing an 

approach based on decentralization and 

privacy-preserving techniques. Providing 

critical defense mechanisms on sensitive 

information at the data and model level while 

ensuring performance and scalability are 

preserved is the objective of this model. 

This particular project uses the paradigm of 

Federated Learning (FL), which is a form of 

collaborative machine learning where model 

training happens on various devices or servers 

in a decentralized manner, and raw data stays 

local. FL helps reduce privacy risk as it 

eliminates the need to transfer private data to 

central repositories. To make this approach 

stronger, the system incorporates advanced 

cryptographic methods such as Homomorphic 

Encryption, Differential Privacy, and Secure 

Multi-Party Computation (SMPC). These 

approaches provide encrypted calculations, 

data mask through noise addition as well as 

secure collective computations thereby 

protecting each individual data point from 

exposure during training agnostic multi-

dimensional space process known as 

computation graph directed acyclic graphs,. 

Besides privacy preservation, model failure 

reasons are also addressed by this project 

Key words: Secure Multi-Party Computation, 

Differential Privacy, Homomorphic 

Encryption, Federated Learning. 
1. INTRODUCTION:  
As machine learning (ML) technologies are 

adopted in diverse industries such as 

healthcare, finance, and even security, serious 

concerns have arisen about user data privacy as 

well as the security of machine learning 

models. As systems become more automated, it 

is critical to protect data confidentiality, 

integrity, and compliance during the entire 

lifecycle of machine learning. This project 

seeks to apply privacy-preserving approaches 

and protective policies to mitigate risks for 

both the data and models associated with them. 

Artificial intelligence has a branch called 

Machine Learning which trains algorithms on 

large troves of data so they can subsequently 

make forecasts or decisions without clear 

directives. With the help of sophisticated 

algorithms use today, 

ML models tell patterns in data or transition 

towards more sophisticated states based on 

historical information. Each model can be 

grouped according to level of their training 

processes and type of utilized data Within this 
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project framework, privacy issues emerge due 

to the collection of data and authorization of 

confidentiality information in training and 

inference. To mitigate these challenges, the 

project applies federated learning, differential 

privacy, homomorphic encryption, along with 

other strategies designed for secure ML 

systems while ensuring they are scalable and 

compliant. 

1.1 Important Aspects:   
1.1.1 Homomorphic Encryption: The project 

uses homomorphic encryption to process 

encrypted data without decrypting it first. This 

helps maintain confidentiality during the entire 

machine learning pipeline involving sensitive 

data.   

1.1.2. Differential Privacy: Differential privacy 

is also integrated in order to protect records 

within a dataset. For this purpose, controlled 

noise will be injected into the data so that 

privacy preserving features can be balanced 

with its usefulness for answering questions of 

interest.   

1.1.3. Secure Multi-Party Computation 

(SMPC): SMPC protocols allow joint 

computation on distributed datasets without 

any party having access to the unprocessed 

data.In this way, proper multi-party 

contribution from different model training 

participants is ensured for security purposes.   

1.1.4. Federated Learning: It enables raw datato 

remain stored in decentralized devices and only 

models are exchanged, thus achieving privacy 

disrespect alongside collaborative learning 

which lessens dependence on central data hubs.   

1.1.5. Model Watermarking: Watermarking 

methods are used in order to strengthen model 

security by embedding identifiable markers 

into the parameters of the models which aids in 

identifying unauthorized reproductions or 

modifications of the models. 

 

3. Related Works:  
No. Title Technique 

/ Approach 
Contribution Dataset / 

Application 
Year Reference 

1 Deep Learning 

with 

Differential 

Privacy 

Differential 

Privacy 

(DP-SGD) 

First DP 

method for 

deep learning; 

used moments 

accountant 

MNIST, 

CIFAR-10 

2016 Abadi et 

al., 2016 

2 PATE: Private 

Aggregation of 

Teacher 

Ensembles 

Ensemble 

Learning + 

Differential 

Privacy 

Improves 

privacy via 

teacher- 

student 

models 

MNIST 2017 Papernot 

et al., 

2017 

3 Homomorphic 

Encryption for 

Machine 

Learning 

Fully 

Homomorp 

hic 

Encryption 

(FHE) 

Enables ML 

on encrypted 

data without 

decryption 

Encrypted 

MNIST 

2018 Bost et al., 

2015 
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4 Federated 

Learning: 

Collaborative 

ML without 

Centralized 

Data 

Federated 

Learning 

(FL) 

Edge devices 

train shared 

model while 

preserving 

data locality 

Mobile 

keyboard 

prediction 

2017 McMahan 

et al., 2017 

5 CryptoNets: 

Applying Neural 

Networks to 

Encrypted Data 

Homomorp 

hic 

Encryption 

+ CNN 

First 

encrypted 

inference 

with neural 

networks 

MNIST 2016 Gilad- 

Bachrach 

et al., 

2016 

No. Title Technique 

/ Approach 

Contributio

n 

Dataset / 

Application 

Year Reference 

6 Privacy- 

Preserving Deep 

Learning using 

Secure 

Multiparty 

Computation 

(MPC) 

Secure MPC Enables 

joint 

learning 

without 

data 

leakage 

between 

parties 

Custom 

datasets 

2017 Shokri & 

Shmatiko

v 

, 2015 

7 Opacus: 

Differential 

Privacy Library 

for PyTorch 

DP-SGD in 

PyTorch 

Provides 

easy-to-use 

DP training 

for DL 

models 

Various 

datasets 

2020 Facebook 

AI 

8 DP-FedAvg: 

Privacy- 

Preserving 

Federated 

Averaging 

DP + FL (DP- 

FedAvg) 

Combines 

DP with 

Federated 

Averaging 

Healthcare 

data, image 

data 

2020 Geyer et 

al., 2017 

9 SecureML: 

System for 

Secure Machine 

Learning 

MPC + 

Garbled 

Circuits 

Provides 

secure 

training and 

prediction 

pipeline 

Private datasets 2017 Mohassel 

& Zhang, 

2017 
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10 Survey of 

Privacy- 

Preserving 

Techniques in 

ML 

Survey 

(Various 

Techniques) 

Overview 

of DP, HE, 

MPC, FL in 

ML 

applications 

— 2021 Ayoade et 

al., 2021 

Table 1:- Literature Survey on Secure ML Techniques 

4. IMPLEMENTATION STUDY:  
Current privacy-preserving and secure machine 

learning (ML) systems use a variety of 

strategies to safeguard private information and 

guarantee the safety of ML models. Among the 

most important methods and strategies 

employed in current systems are:  

4.1 Differential privacy is a technique that 

ensures that individual data points cannot be 

differentiated by adding noise to the input data. 

In addition to enabling insightful analysis of the 

data, this helps safeguard people's privacy. 

4.2  Federated Learning: This decentralized 

method of machine learning involves training 

the model on several servers or devices that 

store local data samples without sharing them. 

Since the raw data never leaves the local device, 

this helps to secure the privacy of the data. 

4.3 Homomorphic Encryption: This type of 

encryption enables calculations to be made on 

encrypted material without the need to decrypt 

it. This guarantees the privacy of sensitive data 

by keeping it encrypted during the calculation 

process. 

5 Proposed Methodology 
To address the drawbacks of existing 

Methods, we propose a novel approach 

that combines multiple privacy-

preserving and secure machine learning 

(ML) techniques to achieve a balance 

between privacy, security, and utility. 

Our proposed system includes the 

following key components: 

5.1 Hybrid Differential Privacy: We 

propose a hybrid differential 

privacy approach that combines 

the strengths of local and 

centralized differential privacy. 

Local differential privacy is used 

to add noise to individual data 

points, ensuring privacy at the 

data source. Centralized 

differential privacy is then applied 

to aggregate the noisy data, 

preserving privacy while 

maintaining data utility. 

5.2 Adaptive Federated Learning: 

Our system includes an adaptive 

federated learning framework that 

dynamically adjusts the learning 

process based on the data 

distribution and model 

performance at the local devices. 

This helps mitigate the challenges 

of data heterogeneity and 

improves the overall efficiency 

and scalability of federated 

learning. 

5.3 Secure Model Aggregation: To 

address the security risks 

associated with federated learning, 

we propose a secure model 

aggregation technique that ensures 

that the model updates from 

different devices are combined in 

a secure and verifiable manner, 

protecting against model 

poisoning attacks. 
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Fig 1:- this figure presents  proposed Model  

The architecture of the proposed system follows the federated learning model with integrated 
privacy-preserving techniques. As illustrated in Figure 4.2.1, the architecture consists of multiple client 

devices, each containing local data and a local machine learning model. These clients train the model 

independently on their private data and send encrypted model updates to a central server. 

Key components of the system include: 

● Client Devices: Each client contains: 

○ Local dataset (e.g., healthcare, financial, or sensor data) 

○ Local model which is trained using only the device's data 

○ Encryption mechanism to protect model updates before transmission 

● Encrypt/Secure Aggregation Module: This central module: 

○ Receives encrypted model updates from clients 

○ Applies homomorphic encryption or secure multiparty computation (SMPC) 

○ Aggregates updates without accessing raw data 

● Central Server: The server: 

○ Hosts the aggregated model (global model) 

○ Sends updated global model parameters back to clients 

○ Does not access or store raw client data 

● Global Model: The final outcome of the system that is collaboratively trained by all 

participating clients while preserving data privacy. 

The architecture also supports differential privacy by injecting noise into the gradients or model 

updates before they are encrypted. This additional layer of defense ensures compliance with privacy 

regulations such as GDPR and HIPAA. 

5.1 Algorithm 

● K: total number of clients 

● C: fraction of clients selected per round (e.g., 0.1 or 0.2) 

● R: total number of communication rounds 
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● E: local epochs per client 

● η: learning rate 

● GlobalModel: initialized on the server 

● Clients train locally on private data 

steps 

Initialize GlobalModel θ₀ on the Server 
For round r in 1 to R: 

    Server: 

        m ← max(C * K, 1)               # Number of clients to sample 

        S_r ← random sample of m clients from total K clients 

        Broadcast current GlobalModel θ_r to all selected clients in S_r 
    Each selected Client i ∈ S_r (executed in parallel): 

        θ_i ← θ_r                        # Receive global model 

        Train θ_i on local data D_i for E epochs using learning rate η: 
            For local epoch e in 1 to E: 

                Update θ_i using local SGD on D_i 
        Optional Privacy Step: 

            - Clip model updates to bound sensitivity 

            - Add Gaussian noise for Differential Privacy: θ_i = θ_i + Noise 

        Send local model update Δθ_i = θ_i - θ_r back to server 
    Server: 

        Optional: Perform Secure Aggregation of all updates Δθ_i 
        Aggregate updates to update global model: 

            θ_r+1 = θ_r + (1/m) * Σ Δθ_i for all i ∈ S_r 

Output: Final trained GlobalModel θ_R 

6. RESULTS: 

 
Fig 2:-sample In the above screen we are applying the Differential Privacy algorithm  on RELEVANT features 

dataset and after applying we can see entire dataset values get changed with noise data and this changed values 

you can see in the above table 
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            Fig 3:- In the above screen training Decision Tree algorithm on Differential Privacy values and after 

training we perform prediction on test data and then Decision tree got 98% accuracy on Differential privacy 

values which proves there is no effect on ML model after applying privacy. In confusion, the matrix graph x-

axis represents Predicted Labels and y-axis represents True Labels where all blue boxes represent incorrect 

prediction count and yellow, green represent correct prediction count. In the ROC curve graph x-axis 

represents False Positive Rate and y-axis represents True Positive rate and if the blue line comes below the 

orange line, then all predictions are false and if goes above the orange line then all predictions are correct 

 

Fig 4:- Applying Homomorphic Encryption to training feature 

 

Fig 5:- In the above screen training decision tree on Homomorphic features and then decision 

tree got 100% accuracy and can see other metrics graph of trained model performance.
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Fig 6:- In the above graph displaying Decision tree performance on both Differential 

Privacy and Homomorphic features where x-axis represents technique name and y-axis 

represents accuracy and other metrics in different color bars and from above graph we 

can say both techniques manage to give ML model accuracy more than 95%. 

 

 
Fig 7:- In the above screen displaying both algorithm performance in tabular format. 

So, from above experiments we can see ML shows no change in performance even 

after model get privacy so by using this privacy, we can secure model features from 

attackers 

 

Fig 8:- In the above screen we are selecting the Differential Privacy mode from the Streamlit 

interface. The user can adjust the privacy budget (epsilon value), and the model displays its 

resulting accuracy after training with differential noise applied 

7. CONCLUSION  
As data privacy becomes an increasingly 

critical concern in the digital era, 

Federated Learning (FL) emerges as a 

promising paradigm for enabling 

collaborative machine learning without 

compromising individual privacy. By 

ensuring that raw data remains localized 

on user devices and only model updates 

are shared, FL significantly reduces the 

risk of data breaches and ensures greater 

compliance with privacy regulations such 

as GDPR and HIPAA. 

However, to truly secure user privacy in 

FL, it is essential to address key challenges 

such as inference attacks, malicious 

participants, and communication 

inefficiencies. Integrating advanced 
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techniques like secure aggregation, 

differential privacy, and robust encryption 

enhances both the privacy and security of 

federated learning systems. 

This project emphasizes the development 

of a secure and privacy-preserving 

federated learning framework that 

balances performance, scalability, and 

compliance. Through careful design of 

functional components and adherence to 

non-functional requirements such as 

security, reliability, and usability, the 

system can serve as a practical and ethical 

solution for privacy- preserving machine 

learning in real-world applications. 

Ultimately, secure federated learning 

represents a critical step toward building 

trust in AI systems, empowering users 

with control over their data, and enabling 

innovation in a privacy- conscious manner. 

7.1 FUTURE SCOPE 
While this project successfully demonstrates 

the feasibility and effectiveness of secure and 

privacy-preserving federated learning, several 

avenues remain open for future enhancement 

and research: 

1. Scalability with Real-Time Data 
Streams: The current implementation is 

based on static datasets. Future work can 

focus on integrating real-time data 

streaming capabilities to enable 

continuous learning from dynamic 

sources such as IoT devices or mobile 

apps. 

2. Integration of Blockchain for 
Auditing: Blockchain technology can 

be introduced to create immutable logs 

of model updates and data access, 

ensuring traceability and increasing trust 

among participants in federated 

environments. 

3. Support for Multi-Model Learning: 
Extending the framework to support 

simultaneous training of multiple 

models across heterogeneous data and 

devices can improve learning quality in 

complex use cases such as smart 

healthcare and autonomous systems. 

4. Enhanced Defense Against 
Adversarial Attacks: Ongoing research 

into adversarial machine learning can be 

integrated to better defend against model 

inversion attacks, backdoor attacks, and 

poisoning of local updates. 

5. Cross-Device Optimization: 
Optimization techniques such as model 

compression, quantization, and 

resource-aware scheduling can be 

incorporated to improve FL performance 

on low-power or mobile devices. 

6. Edge and Cloud Hybrid FL: A future 

direction could include implementing a 

hybrid edge-cloud FL system, where 

computation is distributed intelligently 

based on network latency, energy 

consumption, and data sensitivity. 

7. User-Friendly Interface and 
Deployment: The system can be 

enhanced with a graphical user interface 

(GUI) and containerized (using Docker 

or Kubernetes) for real- world 

deployment and testing at scale. 
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